PDE estimation techniques for advanced battery management systems - Part II: SOH identification
نویسندگان
چکیده
A critical enabling technology for electrified vehicles and renewable energy resources is battery energy storage. Advanced battery systems represent a promising technology for these applications, however their dynamics are governed by relatively complex electrochemical phenomena whose parameters degrade over time and vary across material design. Moreover, limited sensing and actuation exists to monitor and control the internal state of these systems. As such, battery management systems require advanced identification, estimation, and control algorithms. In this paper we examine state-of-health (SOH) estimation, framed as a parameter identification problem for parabolic PDEs and nonlinearly parameterized output functions. Specifically, we utilize the swapping identification method for unknown parameters in the diffusion partial differential equation (PDE). A nonlinear least squares method is applied to the output function to identify its unknown parameters. These identification algorithms are synthesized from the single particle model (SPM). In a companion paper we examine a new battery state-of-charge (SOC) estimation algorithm based upon the backstepping method for PDEs.
منابع مشابه
PDE estimation techniques for advanced battery management systems - Part I: SOC estimation
A critical enabling technology for electrified vehicles and renewable energy resources is battery energy storage. Advanced battery systems represent a promising technology for these applications, however their dynamics are governed by relatively complex electrochemical phenomena whose parameters degrade over time and vary across manufacturer. Moreover, limited sensing and actuation exists to mo...
متن کاملAdaptive PDE Observer for Battery SOC/SOH Estimation via an Electrochemical Model
This paper develops an adaptive PDE observer for battery state-of-charge (SOC) and state-of-health (SOH) estimation. Real-time state and parameter information enables operation near physical limits without compromising durability, thereby unlocking the full potential of battery energy storage. SOC/SOH estimation is technically challenging because battery dynamics are governed by electrochemical...
متن کاملAdaptive Partial Differential Equation Observer for Battery State-of-Charge/State-of-Health Estimation Via an Electrochemical Model
This paper develops an adaptive partial differential equation (PDE) observer for battery state-of-charge (SOC) and state-of-health (SOH) estimation. Real-time state and parameter information enables operation near physical limits without compromising durability, thereby unlocking the full potential of battery energy storage. SOC/SOH estimation is technically challenging because battery dynamics...
متن کاملAdaptive Pde Observer for Battery Soc/soh Estimation
This paper develops an adaptive PDE observer for battery state-of-charge (SOC) and state-of-health (SOH) estimation. Realtime state and parameter information enables operation near physical limits without compromising durability, thereby unlocking the full potential of battery energy storage. SOC/SOH estimation is technically challenging because battery dynamics are governed by electrochemical ...
متن کاملModel Based Battery Management System for Condition Based Maintenance
A generalized approach for combining state of charge (SOC) and state of health (SOH) techniques together to create a self-adaptive battery monitoring system is discussed. First, previously published techniques and their feasibility for on-line SOC and SOH estimation are reviewed. Then, a method of utilizing SOH predictions to update the SOC estimator in order to minimize drift due to capacity l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012